Taiwan academics improve 3D printing speed and quality with ambient temperature sensors

Spread the love

Dec 6, 2018 | By Cameron

3D printing gets faster, cheaper, and more precise every day thanks to investigative studies and experimentation conducted by dedicated researchers like those at Da-Yeh University in central Taiwan; in a joint effort with Plastics Industry Development Center (PIDC), they developed a way of incorporating the ambient environment of the area around the 3D printer into the g-code generated when a 3D model is virtually sliced for 3D printing.

A hot glue gun is often used as a way to describe 3D printing to the uninitiated because it’s at a scale and speed that’s easy to visualize: a solid stick of glue is melted into a liquid that then cools and rapidly solidifies, and therefore layers of molten glue can be built up on top of each other to form a crude 3D shape. That analogy works fine for introducing someone to the technology, but it can invoke imagery of a slow-moving, sloppy apparatus that makes low-quality objects. It doesn’t convey the delicate balance of the many dynamic parameters such as extrusion multipliers, temperature, print speed, and active cooling that enables 3D printers to move rapidly and accurately.

For 3D printers to produce the high-resolution objects they’re capable of, all of those factors and more have to be precisely set in the slice parameters. If the hotend temperature is too low, extrusion will be poor and layers won’t bond well. If the extrusion multiplier is too high, walls won’t be uniform and surface quality will take a hit. The list goes on. In an effort to take some of the guesswork out of setting all those parameters, Chen Yuwen, dean of Da-Yeh’s College of Engineering, designed a system that uses sensors to measure the ambient temperature and humidity levels of the space near the 3D printer. That information is fed into the slicing software which then adjusts print settings to achieve optimal print speed and quality.

So if the room is particularly cold, the g-code would instruct the 3D printer to raise the bed temperature a bit and perhaps decrease active cooling. Determining how fast a part can be 3D printed at a given quality setting is often difficult and can require a lot of trial and error. By telling the 3D printer to factor in the ambient environment automatically, users are relieved of some of the more tedious parameter setting.

The research team is now working to make the parameter adjustments in real time to accommodate 3D prints that take a long time and may experience ambient environment changes mid-print. Printing architectural components will need systems like this to ensure mechanical properties meet safety standards, so expect to see more of this in the future.

Posted in 3D Printing Technology

Maybe you also like:

Similar Posts
Volkswagen toolmaking opens advanced 3D printing center, plans to mass produce parts in 2-3 years
Spread the loveDec 11, 2018 | By Thomas German automaker Volkswagen’s toolmaking unit has just announced that it is opening...
HQ Visit: MakerBot launches Method performance 3D printer
Spread the loveToday, two years after the launch of the Replicator +, American desktop 3D printer manufacturer and Stratasys subsidiary...
Siemens opens £24 million Advanced Manufacturing at the University of Nottingham
Spread the loveSiemens, Europe’s largest industrial manufacturing company, has opened a £24 million research facility at the University of Nottingham...

There are no comments yet, add one below.

Leave a Reply


Name (required)

Email (required)

Website

%d bloggers like this: